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TM Modes in Oversized Planar Metallic Wavegnides

DANIEL PASQUET, JEAN-LUC GAUTIER,

AND PIERRE POUVIL

Ab.$trad — The propagation properties of transverse magnetic (TM) and
hybrid modes in plane and circular metalfic waveguides are considered

when their dimensions are great with regard to the wavelength. When the

oversizing is not too great, the behavior is the same as those of conven-
tional metallic waveguides. For high frequencies (greater oversizing), we
describe an unexpected bebavior for these modes. The aim of this work is

mainly to derive asymptotic expressions useful for the design of for

infrared (FIR) wavegnide lasers.

I. INTRODUCTION

Oversized waveguides are used mainly in waveguide lasers.

Indeed, the resonating modes always have low orders despite

their large dimensions with regard to the wavelength. The wave-

guide constituting a laser cavity can be a dielectric or a metallic

waveguide or both [1]. Its shape can be rectangular [1] or circular.

The simplest propagating structure which is studied is the plane

waveguide. J. J. Burke [2] has dealt with plane dielectric wave-

guides propagating TE modes. The propagation of TM modes in

such guides are a little more complicated but can be studied

rigorously [3]. Many authors have solved this problem for other

frequency ranges [4], [7], especially for the Earth-ionosphere

waveguide [4]–[6]. We have centered our work on the order of

magnitude concerning the FIR lasers. Interesting approximate

expressions can be carried out in that case [8] owing to the

oversizing. Circular dielectric waveguide has been studied by

E. A. J. Marcatili and R. A. Schmeltzer [9] in their well-known

paper. The results for slab dielectric waveguides propagating TE

and TM modes can be extended to circular dielectric waveguides

propagating TE, TM, HE, and EH modes [10]. Metallic wave-

guides propagating TM and hybrid modes can be considered in

the same way.

Plane metallic waveguides can propagate TE modes and TM

modes. J. J. Burke’s theory [2] is sufficient to describe TE modes.

We only deal with TM modes. These modes have already been

considered for different frequency bands.
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Fig. 1. Schematic description of a plane metalhc wavegmde.

II. PLANE PROPAGATION STRUCTUP@

The propagating structure is shown in Fig. 1. A dielectric slab

2a thick with a permittivity c1 is bounded by two pieces of a

metal which has a great conductivity u. This medium can be

considered with a permittivity that is equal to ju/o, where CJ is

the angular frequency of the signal. The waveguide is infinite in

the y and z directions and the fields are constant in y. As for

dielectric waveguides, there me modes with either an even or odd

variation of the transverse component of the electric field with

respect to the transverse coordinate x. For all the modes, the

generating function we have chosen is the longitudinal compo-

nent E, of the electric field.

III. EVEN TM MODES

For even TM modes, the E= component has different expres-
sions according to the medium in which it is considered. So,
inside the dielectric medium ( – u < x < a)

E,= EO sin; exp( – yz) exp(j~l) (1)

in the metal

()E= = + E~exp T% exp(– yz)exp(jut). (2)

The upper signs are for the upper metal (i> a).

As in J. J. Burke’s theory, the transverse wavenumbers u and q

and the propagation constant y are linked by

qz=(–j~orrm-y 2)Q2

(3)

(4)

R2=u2+q2=pom(clti– ju)az (5)

where p. is the permeability of the vacuum. The propagation

constant has a real part a (attenuation) and au imaginary part /3.

The boundary conditions at the interfaces between dielectric and

metaJlic media ( x = a and x = — a ) allow us to know the relation

between the amplitude constants EA and E.

E;= EO sin u exp q (6)

and particularly the characteristic equation

ju
qq=-—utanrt.

u
(7)

Equations (5) and (7) can be solved by the means of a desktop

computer. Figs. 2 and 3 show the variations of the real and the

imaginary parts u’ and u“ of the inner transverse wavenumber u
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Fig. 2. Variation of the real part u’ of the inner wavenumber u versus

normalized frequency (u = 1.5 X 107 Q– 1 m– 1, c1 = co) for the first even TM

modes.
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Fig. 3, Variation of the imaginary part u“ Of u for the first even modes

versus normahzed frequency.

with regard to the frequency. The abscissa coordinate is normal-

ized to 1 for the cutoff frequency of the TMZ mode with perfect

metal.

In these figures, the TMO mode does not have the same

behavior as the other even TM modes so we will consider it

separately. Two frequency regions appear for all the modes. For

the ‘lower frequencies, u is close to iVm/2 for the TMN modes

and it is close to (N – 1) n/2 for the higher frequencies. Using

(3), the real and imaginary parts of y can be computed and

drawn as in Figs. 4 and 5.

For the very low frequencies, the well-known characteristics of

metalti,c waveguides can be seen. Particularly, a cutoff frequency

j- can be defined by the equality between a and ~

N-1-l
fc =

4am “
(8)

For lower frequencies (but over 2 fc), an asymptotic expression

of u can be carried out with u very large ( u/wcO >>1 and

uA~/azacO >> 1)

(9)

It is also easy to obtain asymptotic expressions for a and ~

&@~+fi

2fl
(lo)

afi

N2T2

fl=6)&i -
8a2~m

(11)

where c; and – cfl are the reaf and imaginary parts of the

permittivity c1.

As can be seen in Fig. 4, a in this frequency region does not

depend on the order of the mode. The second term of /3, called
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Fig. 4. Variation of the attenuation a for the frost even modes versus normal-

ized frequency,
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Fig. 5 Variation of the propagation constant /3 for the first even modes

versus normalized frequency.

the dispersion term, is the same as in the case of dielectric

waveguides.

For higher frequencies, w is now considered as very large

(u/ucO ~ 1 but oA~/a2wc0 <1)

(N-l) r+(l+j) (N-l)~fi
u=

2 2&cd312ac1
(12)

which leads to

(14)

The attenuation now decreases with the frequency. The cause

of t&s is the reconfining of the propagated energy when u’

decreases, i.e., when the frequency increases. The boundary be-

tween these two behaviors is defined by the angular frequency ci+-

“T=[N:02T(15)

For few centimeter-width waveguides, this angular frequency is

situated between infrared and far infrared (wavelengths of few

tens micrometers).

IV. QUASI-TEM (TMO ) MODE

As we have seen in the previous section, the TMO mode does

not have the same behavior with regard to the frequency as the

other even modes. For the lower frequencies, we recognize the

usual TEM mode for perfect metallic waveguides. It has no cutoff

frequency and the transverse inner wavenumber is close to

3vj
,3/4 1j4u3/40 – l/4a11’ exp—

u=% Po
8

(16)
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Fig. 6. Vanatlon of the real part u’ of u for the first odd modes versus

normalized frequency.

Fig 7 Variation of the Imaginary part u“ of u for the first odd modes

versus normalized frequency.

,W fllph~

I’M m /...the attenuation is

(17)

and the propagation constant is

1
.01 —

.W1

.E2al
\

TM3

\\Tn5

(18)

:::~
.1 1 18 l’a 1000 mm

The existence of a dispersion term proves that it is not an exact

TEM mode. It is the reason why we have called this mode the

quasi-TEM mode.

For higher frequencies, the inner transverse wavenumber is

close to

Fig. 8 Varlatlon of the attenuation a for the first odd modes versus normal-

ized frequency.

‘=r /“’’”
r 1/2 3/2a

‘= ‘1+~) “w”; “

(19)

leas
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The attenuation becomes very large

(20)

.1

.01

.’?s1vThe variations of all the characteristics with regard to the

frequency appear in Figs, 2–5 with the other TM even modes.

The boundary between the two ranges of frequency, defined by

the equality between the approximate values of u“ with the two

approximations is the angular frequency UT
Fig. 9. Vanatlon of the propagation constant /3 for the first odd modes

versus normalized frequency

The upper sign is for x > a.

The boundary conditions give

If we consider that the increase of the frequency causes a

reconfining of the propagated energy, all the transmission tends

to approach the walls and increases the attenuation. When the

frequency becomes higher, the propagation occurs more and

more in the metal and no energy remains in the middle of the

waveguide to ensure an almost lossless propagation.

EL = E. cos u exp q

and the characteristic equation

(24)

(25)

V. ODD TM MODES The simultaneous solution of (5) and (25) gives the curves as

shown in Figs. 6 and 7.

The behavior of these modes for the lower frequencies is the

same as those of the even TM modes (except TMO). All the

approximate expressions remain v&d.
For the higher frequencies, the TMI mode is similar to the

TMO mode, and the other odd TM modes, to the higher order

even TM modes. So, each kind of relation for even modes remain

valid for the appropriate odd modes.

Figs. 8 and 9 show the computed values of a and /3. They

confirm the similarity between the even and odd TM modes.

For odd TM modes, the expressions of E: are the following in

the dielectric:

E== Eocos~ exp( – yz) exp( jut) (22)

and in the metaf

()E== E~exp T; exp(– yz)exp( jut). (23)
-,
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VI. CONCLUSION

The behavior of TM modes in plane metallic waveguides are

quite different according to the frequency range.

For the lower frequencies, these modes are similar to those of

the usual metallic waveguides. The TEMmodebecomes TMO or

a quasi-TEM mode. The other modes keep their properties, In

particular, the attenuation varies like the square root of the

frequency and the inverse of the dimension.

For higher frequency, the behavior of the modes are more

unexpected. The TMO and TMl modes become very attenuated

(the attenuation varies like W2). To the contrary, the other modes

are far less attenuated (the attenuation varies like u– 5/2 and

a-3 ). This can be explained by the existence of central densities

of energy, which only remain when the frequency increases. For

TMO and TMI modes, this central density does not exist and

these modes can’t propagate any more for higher frequencies.

Our results can be used for the mixed rectangular metallic and

dielectric waveguides [1], where quasi-LSE or quasi-LSM modes

can be considered TE or TM modes with regard to the dielectric,

and TM or TE modes with regard to the metal. The increase of

the attenuation with the frequency for some low-order modes

explains the poor Q coefficient for metallic cavities with respect

to dielectric cavities. The same results can be obtained for cir-

cular metallic waveguides. Asymptotic expressions can be easily

carried out.
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Response of Waveguides Terminated in a Tapered

Metallic Wall

J. M. REBOLLAR

Abstract —The characteristics of wavegoides terminated in a tapered

metallic wall are anafyzed by means of the modal analysis and scattering

matrix concept of diaeontinuities. Several applications of this kind of
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(a) (b)

Fig. 1. Rectangular waveguides terminated in tapered metallic wall. (a) Type.

“a” short circuit, slope a. (b) Type-” b“ short circuit, slope ~.

Fig. 2. Step-ladder modeling type-”a” and type-<’ b“ short circuits, respec-

tively.

termination are suggested. The results can be very useful in evaluating the

phase errors produced due to the use of a short-circuited wavegtside with a

metallic wall not placed in an exact transverse plane (z = constant).

I. INTRODUCTION

The classical way of terminating a waveguide with a metallic
wall, to obtain a short circuit, is to place it in a transverse plane
of the waveguide (plane z = constant). Different modes of the
incident field are not generated by this termination, and the
behavior of this short-circuited waveguide is well known.

However, the metallic wall can be placed, by error or by
necessity, in an oblique plane.

In this paper, the effects of this kind of short circuit are
studied. Two different terminations considered here are il-
lustrated in Fig. l(a) and (b).

II. THE MODEL AND ANALYSIS METHOD

The geometry presented in Fig. 1 can be modeled by means of

a step-ladder as it is shown in Fig. 2. As the steps get smaller in

the limit, this model simulates properly the tapered metallic wall.

The geometries illustrated in Fig. 2 show N different wave-

guide sections of A z length, terminated in a classical short circuit

with metallic wall in a transverse plane.

These configurations can be exactly analyzed by means of a

new technique combining the model analysis and scattering ma-

trix concept of transverse discontinuities [1]–[3]. The electromag-

netic field in each waveguide section is assumed to be the sum of

their eigenmodes. Then the scattering matrix S of each discon-

tinuity is obtained [3]. Finally, all discontinuities are joined in

order to obtain the exact response of the complete structure by a

method similar to that proposed by Patzelt and Arndt [3]. This

method permits the combination of as many discontinuities as

desired. The number of modes used to describe the electromag-

netic field in each wavegnide section can be as large as permitted

by the computer. However, convergence is quickly obtained and

20 modes are enough to solve the problem.

The exciting field from the left is considered to consist of the

fundamental TEIO mode of the rectangular waveguide. With this

incident field, and considering the step discontinuities of the “ a“

and “ b“ cases, the next modes are considered.
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