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TM Modes in Oversized Planar Metallic Waveguides

DANIEL PASQUET, JEAN-LUC GAUTIER,
AND PIERRE POUVIL

Abstract — The propagation properties of transverse magnetic (TM) and
hybrid modes in plane and circular metallic waveguides are considered
when their dimensions are great with regard to the wavelength. When the
oversizing is not too great, the behavior is the same as those of conven-
tional metallic waveguides. For high frequencies (greater oversizing), we
describe an unexpected behavior for these modes. The aim of this work is
mainly to derive asymptotic expressions useful for the design of for
infrared (FIR) waveguide lasers.

I. INTRODUCTION

Oversized waveguides are used mainly in waveguide lasers.
Indeed, the resonating modes always have low orders despite
their large dimensions with regard to the wavelength. The wave-
guide constituting a laser cavity can be a dielectric or a metallic
waveguide or both [1]. Its shape can be rectangular [1] or circular.
The simplest propagating structure which is studied is the plane
waveguide. J. J. Burke [2] has dealt with plane dielectric wave-
guides propagating TE modes. The propagation of TM modes in
such guides are a little more complicated but can be studied
rigorously [3]. Many authors have solved this problem for other
frequency ranges [4], [7], especially for the Earth-ionosphere
waveguide [4]-[6]. We have centered our work on the order of
magnitude concerning the FIR lasers. Interesting approximate
expressions can be carried out in that case [8] owing to the
oversizing. Circular dielectric waveguide has been studied by
E. A. J. Marcatili and R. A. Schmeltzer [9] in their well-known
paper. The results for slab dielectric waveguides propagating TE
and TM modes can be extended to circular dielectric waveguides
propagating TE, TM, HE, and EH modes [10]. Metallic wave-
guides propagating TM and hybrid modes can be considered in
the same way.

Plane metallic waveguides can propagate TE modes and TM
modes. J. J. Burke’s theory [2] is sufficient to describe TE modes.
We only deal with TM modes. These modes have already been
considered for different frequency bands.
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Fig. 1. Schematic description of a plane metallic wavegmde.

II. PLANE PROPAGATION STRUCTURE

The propagating structure is shown in Fig. 1. A dielectric slab
2q thick with a permittivity ¢, is bounded by two pieces of a
metal which has a great conductivity o. This medium can be
considered with a permittivity that is equal to jo/w, where « is
the angular frequency of the signal. The waveguide is infinite in
the y and z directions and the fields are constant in y. As for
dielectric waveguides, there are modes with either an even or odd
variation of the transverse component of the electric field with
respect to the transverse coordinate x. For all the modes, the
generating function we have chosen is the longitudinal compo-
nent E, of the electric field.

1I1. EvEN TM MODES

For even TM modes, the E, component has different expres-
sions according to the medium in which it is considered. So,
inside the dielectric medium (—a < x <a)

ux
E =E, sin; exp(— yz)exp( jwt) (D
in the metal
_gx
EZ=iEéexp(+—)exp(—yz)exp(jwt). (2)
a

The upper signs are for the upper metal (x > a).
As in J. J. Burke’s theory, the transverse wavenumbers u and ¢
and the propagation constant y are linked by

u? = (poge® +v2) a? 3)
7=~ juow—v*)d® ©
R?=u?+ ¢® = pgw(€ew — jo)a® (5)

where p, is the permeability of the vacuum. The propagation
constant has a real part a (attenuation) and an imaginary part B.
The boundary conditions at the interfaces between dielectric and
metallic media (x = a and x — — a) allow us to know the relation
between the amplitude constants Ej and E;

E}=Eysinuexpq (6)
and particularly the characteristic equation
jo
€¢=—"utanu. (N

Equations (5) and (7) can be solved by the means of a desktop
computer. Figs. 2 and 3 show the variations of the real and the
imaginary parts «’ and u” of the inner transverse wavenumber u
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Fig. 3. Variation of the imaginary part u” of u for the first even modes

versus normalized frequency.

with regard to the frequency. The abscissa coordinate is normal-
ized to 1 for the cutoff frequency of the TM, mode with perfect
metal,

In these figures, the TM, mode does not have the same
behavior as the other even TM modes so we will consider it
separately. Two frequency regions appear for all the modes. For
the lower frequencies, u is close to Nw/2 for the TM modes
and it is close to (N —1)7/2 for the higher frequencies. Using
(3), the real and imaginary parts of y can be computed and
drawn as in Figs. 4 and 5.

For the very low frequencies, the well-known characteristics of
metallic waveguides can be seen. Particularly, a cutoff frequency
f. can be defined by the equality between & and 8

N+1

Je= 4ay/ o€ .

For lower frequencies (but over 2f,), an asymptotic expression
of u can be carried out with o very large (o/wey, >1 and
o} /atwey > 1)

()

2pg € aw’? ©
Nm/o ' )

It is also easy to obtain asymptotic expressions for a and 8

Na
u=—+(j-1)

_ Wy €’ € (10)
2V/¢] aylo
N2g?
Vv 11
B = wy/noel — Sdodne /ot (11)

where ¢/ and — ¢}’ are the real and imaginary parts of the
permittivity €.
As can be seen in Fig. 4, a in this frequency region does not

depend on the order of the mode. The second term of 8, called
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Fig. 5 Variation of the propagation constant S for the first even modes

versus normalized frequency.

the dispersion term, is the same as in the case of dielectric
waveguides.

For higher frequencies, w is now considered as very large
(6/wep > 1 but oA /awe, < 1)

uz(N—;l—)I%—(l-!—j)

which leads to

(N-1D /o
221, w*%ae

(12)

wfe (N-1)’n%s

(13)

9 /_ 4‘/“%6{3/2(05/203
(N-1)’n?
=~ w/p 14
B = wypee — 8a%wy/ e, (14)

The attenuation now decreases with the frequency. The cause
of this is the deconfining of the propagated energy when u’
decreases, i.c., when the frequency increases. The boundary be-
tween these two behaviors is defined by the angular frequency wy

_ {N(N—l)ﬂzo}m

4“’ aZ 72

(15)

For few centimeter-width waveguides, this angular frequency is
situated between infrared and far infrared (wavelengths of few
tens micrometers).

IV. QuASsI-TeM (TM,) MODE

As we have seen in the previous section, the TM; mode does
not have the same behavior with regard to the frequency as the
other even modes. For the lower frequencies, we recognize the
usual TEM mode for perfect metallic waveguides. It has no cutoff
frequency and the transverse inner wavenumber is close to

- 3j
u = €3/ 4pk/ /4617412 exp -

(16)
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Fig. 6. Vanation of the real part v’ of u for the first odd modes versus
normalized frequency.

the attenuation is

w 34 ]/e’w
- Ho €1 + 1 (17)
2,/¢] ay8c

and the propagation constant is

8 ~ Y2qw (18)
=Wy o€ + .
Ho&y Yaje

The existence of a dispersion term proves that it is not an exact
TEM mode. It is the reason why we have called this mode the
quasi-TEM mode.

For higher frequencies, the inner transverse wavenumber is
close to

7 1/2,.3/2
g @A
u=(1+j 19
(1+)) 2o (19)
The attenuation becomes very large
’” 3/2 2
w € € [O)
~ he ! V‘ Ko (20)
2,/¢ 2o

The variations of all the characteristics with regard to the
frequency appear in Figs. 2~5 with the other TM even modes.
The boundary between the two ranges of frequency, defined by
the equality between the approximate values of u” with the two
approximations is the angular frequency w;
3n pave 4/3
I V2 PRVERVORVE

(21)

wr=|sin

If we consider that the increase of the frequency causes a
deconfining of the propagated energy, all the transmission tends
to approach the walls and increases the attenuation. When the
frequency becomes higher, the propagation occurs more and
more in the metal and no energy remains in the middle of the
waveguide to ensure an almost lossless propagation.

V. Obpb TM MODES

For odd TM modes, the expressions of E, are the following in
the dielectric:

ux

E_= E;cos — exp( — vz) exp(jwt) (22)
a

and in the metal

(23)

x
E,= E(;exp( F q—)exp(— yz)exp( jwt).
a
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Fig. 9. Vanation of the propagation constant B8 for the first odd modes
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The upper sign is for x > a.
The boundary conditions give

E}=Eycosuexp g (29

and the characteristic equation

jou

(25)

“aq=y, tanu

The simultaneous solution of (5) and (25) gives the curves as
shown in Figs. 6 and 7.

The behavior of these modes for the lower frequencies is the
same as those of the even TM modes (except TM,). All the
approximate expressions remain valid.

For the higher frequencies, the TM; mode is similar to the
TM, mode, and the other odd TM modes, to the higher order
even TM modes. So, each kind of relation for even modes remain
valid for the appropriate odd modes.

Figs. 8 and 9 show the computed values of a and B. They
confirm the similarity between the even and odd TM modes.
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VI. CoNCLUSION

The behavior of TM modes in plane metallic waveguides are
quite different according to the frequency range.

For the lower frequencies, these modes are similar to those of
the usual metallic waveguides. The TEM mode becomes TM,, or
a quasi-TEM mode. The other modes keep their properties. In
particular, the attenuation varies like the square root of the
frequency and the inverse of the dimension.

For higher frequency, the behavior of the modes are more
unexpected. The TM, and TM; modes become very attenuated
(the attenuation varies like w?). To the contrary, the other modes
are far less attenuated (the attenuation varies like w3 and
a™?). This can be explained by the existence of central densities
of energy, which only remain when the frequency increases. For
TM, and TM; modes, this central density does not exist and
these modes can’t propagate any more for higher frequencies.

Our results can be used for the mixed rectangular metallic and

dielectric waveguides [1], where quasi-LSE or quasi-LSM modes

can be considered TE or TM modes with regard to the dielectric,

and TM or TE modes with regard to the metal. The increase of
the attenuation with the frequency for some low-order modes
explains the poor Q coefficient for metallic cavities with respect
to diclectric cavities. The same results can be obtained for cir-
cular metallic waveguides. Asymptotic expressions can be easily
carried out.
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Response of Waveguides Terminated in a Tapered
Metallic Wall

J.M. REBOLLAR

Abstract —The characteristics of waveguides terminated in a tapered
metallic wall are analyzed by means of the modal analysis and scattering
matrix concept of discontinuities. Several applications of this kind of
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Fig. 1.  Rectangular waveguides terminated in tapered metallic wall. (a) Type-
“a” short circuit, slope a. (b) Type-“b” short circuit, slope 8.
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Fig. 2. Step-ladder modeling type-“a” and type-“b” short circuits, respec-

tively.

termination are suggested. The results can be very useful in evaluating the -
phase errors produced due to thé use of a short-circuited waveguide with a
metallic wall not placed in an exact transverse plane (z = constant).

I. INTRODUCTION

The classical way of terminating a waveguide with a metallic
wall, to obtain a short circuit, is to place it in a transverse plane
of the waveguide (plane z = constant). Different modes of the
incident- field are not generated by this termination, and the
behavior of this short-circuited waveguide is well known.

However, the metallic wall can be placed, by error or by
necessity, in an oblique plane.

In this paper, the effects of this kind of short circuit are
studied. Two different terminations considered here are il-
lustrated in Fig. 1(a) and (b):

II. THE MODEL AND ANALYSIS METHOD

The geometry presented in Fig. 1 can be modeled by means of
a step-ladder as it is shown in Fig. 2. As-the steps get smaller in
the limit, this model simulates properly the tapered metallic wall.

The geometries illustrated in Fig. 2 show N different wave-
guide sections of Az length, terminated in a classical short circuit
with metallic wall in a transverse plane.

These configurations can be exactly analyzed by means of a
new technique combining the model analysis and scattering ma-
trix concept of transverse discontinuities [1]-[3]. The electromag-
netic field in each waveguide section is assumed to be the sum of
their -ecigenmodes. Then the scattering matrix § of each discon-
tinuity is obtained [3]. Finally, all discontinuities are joined in
order to obtain the exact response of the complete structure by a
method similar to that proposed by Patzelt and Arndt [3]. This
method permits the combination of as many discontinuities as
desired. The number of modes used to describe the electromag-
netic field in each waveguide section can be as large as permitted
by the computer. However, convergence is quickly obtained and
20 modes are enough to solve the problem. )

The exciting field from the left is considered to consist of the’

* fundamental TE,, mode of the rectangular waveguide. With this

3 ”

incident field, and considering the step discontinuities of the
and “b” cases, the next modes are considered.
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